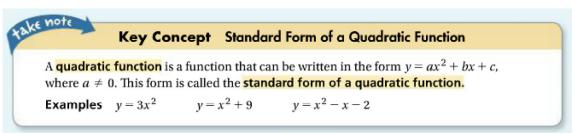
Alg 1 Week 6 Friday Warm Up

1. Skill 12: Simply Exponential Expressions. Simplify, leaving no negative exponents. Show all steps.

$$\frac{7x^{-5}(x^4)^2 \cdot x^0}{(14x^5)^2}$$

2. Skill 13: Multiplying Polynomials: Use a rectangle to multiply and solve the following problem.

$$(5x^3+9x^2-3)(11x-1)$$

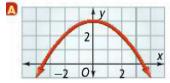

3. Skill 14: Factor a trinomial

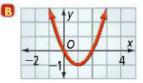
$$10x^2 + 85x + 105$$

- 4. Factor each expression.
- a.) $18h^3 + 45h^2 8h 20$ b.) $36v^3 126v^2 + 48v 168$

- 右.Put into standard form, then name the polynomial based on its degree and number of terms.
 - **a**. 15-*x*
 - **b**. $5b^3 + x^2$

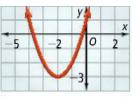
Notes 9-1 Quadratic Graphs and Their Properties

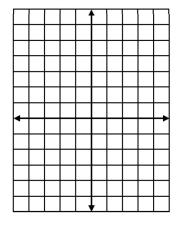



The highest or lowest point of a parabola is its vertex, which is on the axis of symmetry.

If a > 0 in $y = ax^2 + bx + c$, the parabola opens upward. The vertex is the **minimum** point, or lowest point, of the parabola. If a < 0 in $y = ax^2 + bx + c$, the parabola opens downward. \downarrow The vertex is the **maximum** point, or highest point, of the parabola.

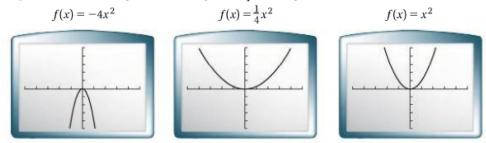
Problem 1 Identifying a Vertex


What are the coordinates of the vertex of each graph? Is it a minimum or a maximum?


Now you try:

What is the vertex of the graph at the right? Is it a minimum or a maximum?

Problem 2 Graphing $y = ax^2$

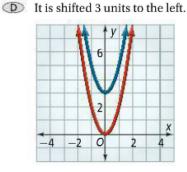

Graph the function $y = x^2$. Make a table of values. What are the domain and range?

A1 S2 w6d4 9-1 Quad functions and equations

Problem 3 Comparing Widths of Parabolas

Use the graphs below. What is the order, from widest to narrowest, of the graphs of the quadratic functions $f(x) = -4x^2$, $f(x) = \frac{1}{4}x^2$, and $f(x) = x^2$?

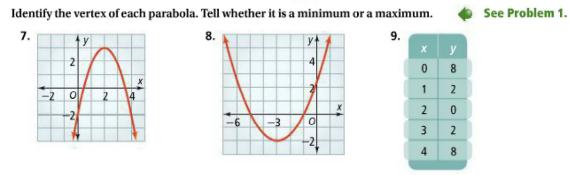
Got lt? 3. What is the order, from widest to narrowest, of the graphs of the functions $f(x) = -x^2$, $f(x) = 3x^2$, and $f(x) = -\frac{1}{3}x^2$?


Problem 4 Graphing $y = ax^2 + c$

Multiple Choice How is the graph of $y = 2x^2 + 3$ different from the graph of $y = 2x^2$?

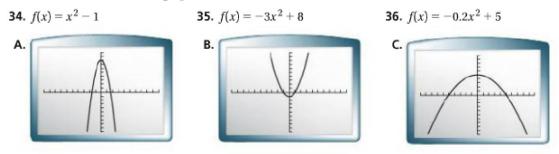
It is shifted 3 units up.
 It is shifted 3 units down.

C It is shifted 3 units to the right.



Got lt? 4. Graph $y = x^2$ and $y = x^2 - 3$. How are the graphs related?

		4			
		,	,		


HW: page 550

 Order each group of quadratic functions from widest to narrowest graph.
 See Problem 3.

 16. $y = 3x^2, y = 2x^2, y = 4x^2$ **17.** $f(x) = 5x^2, f(x) = -3x^2, f(x) = x^2$
18. $y = -\frac{1}{2}x^2, y = 5x^2, y = -\frac{1}{4}x^2$ **19.** $f(x) = -2x^2, f(x) = -\frac{2}{3}x^2, f(x) = -4x^2$

Match each function with its graph.

Page 536-537

Simplify. Write each answer in standard form.

12.
$$(2v^3 - v + 8) + (-v^3 + v - 3)$$

14.
$$(4h^3 + 3h + 1) - (-5h^3 + 6h - 2)$$

Find the GCF of the terms of each polynomial. Then factor the polynomial.

22. $12p^4 + 16p^3 + 8p$

24. $45c^5 - 63c^3 + 27c$

Simplify each product. Write in standard form.

36. $(6c+5)^2$

Factor each expression
42.
$$g^2 - 5g - 14$$

44. $6k^2 - 10k\ell + 4\ell^2$
50. $3x^2 + 3x - 6$
54. $-2h^2 + 4h + 70$